Closing Thu: 12.4(1)(2), 12.5(1) Closing next Tue: 12.5(2)(3), 12.6 Closing next Thu: 10.1/13.1 *Office Hours:* 1:30-3:00pm in Smith 309

12.5 Lines and Planes in 3D

<u>Lines:</u> We use parametric equations to describe 3D lines. Here is a 2D warm-up:

- *Ex*: Consider the line: y = 4x + 5.
- (a) Find a vector parallel to the line.Call it v.
- (b) Find a vector whose head touches the line when drawn from the origin. Call it r₀.
- (c) Observe, we can reach all other
 points on the line by walking along
 r₀, then adding scale multiples of v.

This same idea works to describe any line in 2- or 3-dimensions.

The equation for a line in 3D:

 $v = \langle a, b, c \rangle =$ parallel to the line. $r_0 = \langle x_0, y_0, z_0 \rangle =$ a position vector then all other points, (x, y, z), satisfy $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$, for some number *t*.

The above form ($r = r_0 + t v$) is called the *vector form* of the line.

We also write this in *parametric form* as:

 $x = x_0 + at,$ $y = y_0 + bt,$ $z = z_0 + ct.$

or in symmetric form:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Basic Example – Given Two Points: Find parametric equations of the line thru the points P(1,0,2) and Q(-1, 2, 1).

General Line Facts

- 1. Two lines are **parallel** if their direction vectors are parallel.
- 2. Two lines intersect if they have an (x, y, z) point in common (use a different parameter for each line when solving!)

Note: The *acute angle of intersection* would be the acute angle between the direction vectors.

3. Two lines are **skew** if they don't intersect and aren't parallel.

Planes:

The equation for a plane in 3D:

 $n = \langle a, b, c \rangle =$ orthogonal to plane $r_0 = \langle x_0, y_0, z_0 \rangle =$ a position vector then all other points, (x, y, z), satisfy $\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0.$

The above form $(\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0)$ is called the *vector form* of the plane.

We also write this in *standard form* as: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

We sometimes expand to the form $ax + by + cz - ax_0 - by_0 - cz_0 = 0$, letting $d = -ax_0 - by_0 - cz_0$, we get ax + by + cz + d = 0. (Note: we call this a *linear equation*)

Basic Example – Given Three Points: Find the equation for the plane through the points P(0, 1, 0), Q(3, 1, 4), and R(-1, 0, 0)

General Plane Facts

- 1. Two planes are **parallel** if their normal vectors are parallel.
- 2. If two planes are not parallel, then they must intersect to form a line.
- 2a. The *acute angle of intersection* is the acute angle between their normal vectors.
- 2b. The planes are orthogonal if their normal vectors are orthogonal.

Side comment:

If you want the distance between two *parallel* planes, then

- (a) Find any point on the first plane
 (x₀, y₀, z₀) and any point on the second plane (x₁, y₁, z₁).
- (b) Write $\mathbf{u} = \langle x_1 x_0, y_1 y_0, z_1 z_0 \rangle$
- (c) Project **u** onto one of the normal vectors **n**.

```
|comp<sub>n</sub>(u)| = dist. between planes
```